
Fall 2010/2011

Outline of the Lecture
� Basic Elements of Assembly Language
� Data Types.
� Reserved Words, Identifiers

Basic Elements

Simple program in assembly language
main PROC

main ENDP
Data Types

The fundamental data types of the IA
and quadwords. A byte is eight bits, a word is 2 bytes (16 bits), a doubleword is 4 bytes
(32 bits), and a quadword is 8 bytes (64 bits)
new data type, a 128-bit floating

Integer Constants:
[{+ |

[..] are optional and elements within braces
elements (separated by the | character)
Radix may be one of the following (uppercase or

Examples

Fall 2010/2011 – Lecture Notes # 5

of Assembly Language.

Identifiers and Directives.

Basic Elements of Assembly Language

Simple program in assembly language:
main PROC

mov eax,5 ; move 5 to the EAX register
add eax,6 ; add 6 to the EAX register
call WriteInt ; display value in EAX
exit ; quit

main ENDP

The fundamental data types of the IA (Intel Architecture) are bytes, words, doublewords,
and quadwords. A byte is eight bits, a word is 2 bytes (16 bits), a doubleword is 4 bytes

and a quadword is 8 bytes (64 bits). The Pentium® III processor introduced a
floating-point numbers data type.

[{+ | −}] digits [radix]

are optional and elements within braces {..} require a choice of one of the enclosed
character)

Radix may be one of the following (uppercase or lowercase):

mov eax,5 ; move 5 to the EAX register
add eax,6 ; add 6 to the EAX register
call WriteInt ; display value in EAX

are bytes, words, doublewords,
and quadwords. A byte is eight bits, a word is 2 bytes (16 bits), a doubleword is 4 bytes

The Pentium® III processor introduced a

require a choice of one of the enclosed

Integer Expressions

Examples

Real Number Constants
A decimal real contains an optional sign followed by an integer, a decimal point, an
optional integer that expresses a fraction, and an optional exponent:

[sign]
Following are the syntax for the sign and exponent:

exponent E[{+,
Following are examples of valid real number constants:

2.
+3.0
-44.2E+05
26.E5

Character Constants
A character constant is a single
String Constants
A string constant is a sequence of characters (including spaces) enclosed in single or
double quotes:
Reserved Words
Reserved words have special meaning in
context. There are different types of reserved words:
� Instruction mnemonics
� Directives, which tell MASM how to assemble programs.
� Attributes , which provide size and usage information for va

Examples are BYTE
� Operators, used in constant expressions.

A decimal real contains an optional sign followed by an integer, a decimal point, an
optional integer that expresses a fraction, and an optional exponent:

[sign] integer.[integer][exponent]
Following are the syntax for the sign and exponent:

sign {+,-}
exponent E[{+, -}]integer

Following are examples of valid real number constants:

A character constant is a single character enclosed in single or double quotes.

A string constant is a sequence of characters (including spaces) enclosed in single or

Reserved words have special meaning in MASM and can only be used in their correct
are different types of reserved words:

Instruction mnemonics, such as MOV , ADD, and MUL .
, which tell MASM how to assemble programs.
, which provide size and usage information for variables and operands.

 and WORD.
, used in constant expressions.

A decimal real contains an optional sign followed by an integer, a decimal point, an

character enclosed in single or double quotes.

A string constant is a sequence of characters (including spaces) enclosed in single or

and can only be used in their correct

riables and operands.

� Predefined symbols, such as @data, which return constant integer values at
assembly time.

Identifiers
An identifier is a programmer-chosen name. It might identify a variable, a constant, a
procedure, or a code label. Keep the following in mind when creating identifiers:
� They may contain between 1 and 247 characters.
� They are not case sensitive.
� The first character must be a letter (A..Z, a..z), underscore (_), @ , ?, or $.

Subsequent characters may also be digits.
� An identifier cannot be the same as an assembler reserved word.

Directives
A directive is a command embedded in the source code. Directives do not execute at run
time, whereas instructions do. Directives can define
� Variables
� Macros
� Procedures
� Memory segments

Directives are case insensitive. It recognizes .data , .DATA, and .Data as equivalent.
Example
The DWORD directive tells the assembler to reserve space in the program for a
doubleword variable. The MOV instruction executes at run time, copying the contents
of myVar to the EAX register:

myVar DWORD 26 ; DWORD directive
mov eax,myVar ; MOV instruction

Defining Segments
One important function of assembler directives is to define program sections or segments.
.data
The .DATA directive identifies the area of a program containing variables:
.code

The .CODE directive identifies the area of a program containing instructions:
.stack 100h
The .STACK directive identifies the area of a program holding the runtime stack, setting
its size:

Data Labels: a data label identifies the location of a variable, providing a convenient
way to reference the variable in code. The following, for example, defines a variable
named count:

count DWORD 100
The assembler assigns a numeric address to each label. It is possible to define multiple
data items following a label. In the following example, array defines the location of the
first number (1024). The other numbers following in memory immediately afterward:

array DWORD 1024, 2048
DWORD 4096, 8192

Code Labels: a label in the code area of a program (where instructions are located) must
end with a colon (:) character. In this context, labels are used as targets of jumping and
looping instructions.
For example, the following JMP (jump) instruction transfers control to the location
marked by the label named target, creating a loop:

target:
mov ax,bx
...
jmp target

